Equivalence of Recurrence Relations for Feynman Integrals with the Same Total Number of External and Loop Momenta

نویسندگان

  • P. A. Baikov
  • V. A. Smirnov
چکیده

We show that the problem of solving recurrence relations for L-loop (R + 1)-point Feynman integrals within the method of integration by parts is equivalent to the corresponding problem for (L + R)-loop vacuum or (L + R − 1)-loop propagator-type integrals. Using this property we solve recurrence relations for two-loop massless vertex diagrams, with arbitrary numerators and integer powers of propagators in the case when two legs are on the light cone, by reducing the problem to the well-known solution of the corresponding recurrence relations for massless three-loop propagator diagrams with specific boundary conditions .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to the momentum expansion of multiloop Feynman diagrams

We present a new method for the momentum expansion of Feynman integrals with arbitrary masses and any number of loops and external momenta. By using the parametric representation we derive a generating function for the coefficients of the small momentum expansion of an arbitrary diagram. The method is applicable for the expansion w.r.t. all or a subset of external momenta. The coefficients of t...

متن کامل

Some recent results on evaluating Feynman integrals

where ki, i = 1, . . . , h, are loop momenta and the denominators Er are either quadratic of linear with respect to ki and external momenta q1, . . . , qN . By default, the integrals are dimensionally regularized with d = 4− 2ǫ. If the number of Feynman integrals needed for a given calculation is small or/and they are simple, one evaluates, by some methods, every scalar Feynman integral of the ...

متن کامل

X iv : h ep - p h / 98 07 44 0 v 1 2 1 Ju l 1 99 8 Compact analytical form for a class of three - loop vacuum Feynman diagrams

We present compact, fully analytical expressions for singular parts of a class of three-loop diagrams which cannot be factorized into lower-loop integrals. As a result of the calculations we obtain the analytical expression for the three-loop effective potential of the massive O(N) ϕ 4 model presented recently Though Quantum Field Theory already has a long history and a number of different appr...

متن کامل

/ 98 07 44 0 v 2 2 6 Ju l 1 99 8 Compact analytical form for a class of three - loop vacuum Feynman diagrams

We present compact, fully analytical expressions for singular parts of a class of three-loop diagrams which cannot be factorized into lower-loop integrals. As a result of the calculations we obtain the analytical expression for the three-loop effective potential of the massive O(N) ϕ 4 model presented recently Though Quantum Field Theory already has a long history and a number of different appr...

متن کامل

Reduction of Feynman Graph Amplitudes to a Minimal Set of Basic Integrals∗

An algorithm for the reduction of Feynman integrals with any number of loops and external momenta to a minimal set of basic integrals is proposed. The method is based on the new algorithms for evaluating tensor integrals, representation of generalized recurrence relations for a given kind of integrals as a linear system of PDEs and the reduction of this system to a standard form. Basic integral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000